Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 30(2): 025303, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30411713

RESUMO

Electron stimulated modifications of the rutile TiO2(110) surface have been investigated using scanning tunnelling microscopy tip pulses and electron beam irradiation. Tip pulses on the 'as-prepared' surface induce local surface reconstruction and removal of surface hydroxyls in a region around the reconstruction. A defocused beam from an electron gun as well as tip pulses have been used to generate a number of oxygen deficient surfaces. All tip pulse features display an oval profile, which can be attributed to the anisotropic conductivity of the TiO2(110) surface. A novel oxygen deficient phase with well-ordered defective 'nano-cracks' has been identified, which can be produced by either electron beam irradiation or low flash anneal temperatures (∼570 K). Annealing such surfaces to moderate temperatures (∼850 K) leads to mixed 1 × 1 and 1 × 2 surfaces, until now only achievable by annealing in oxygen or ageing by repeated sputter/anneal cycles. Heating to normal preparation temperatures (1000 K) reforms the clean, well-ordered 1 × 1 surface termination. Our results demonstrate the potential of electron induced processes to modify the oxygen composition and structure of the TiO2(110) surface in a controllable and reversible way for selective surface patterning and surface reactivity modification.

2.
Faraday Discuss ; 162: 191-200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015584

RESUMO

We have prepared a model catalytic system by depositing Pd onto a TiO2(110) surface held at approximately 720 K. Scanning tunneling microscopy (STM) reveals well-defined Pd nanocrystals consisting of (111) top facets with {111} and {100} side facets. The Pd nanocrystals go down to about 10 nm in width and 1.3 nm in height. Top facets can be imaged with atomic resolution, indicating the absence of TiOx encapsulation. The model catalyst was probed by exposure to CO and O2. By varying the CO exposure, different CO overlayers were formed on the (111) top facets, with coverages ranging from 0.33 to 0.75 of a monolayer. Near edge X-ray absorption fine structure (NEXAFS) measurements at 300 K reveal that at around 0.5 ML coverage, CO is oriented with the molecular axis more or less normal to TiO2(110). Dosing small amounts of 02 separately on a Pd/ TiO2(110) surface led to an overlayer of p(2 x 2)-O formed on the (111) top facet of the Pd nanocrystals at 190 K.

3.
Nano Lett ; 9(1): 155-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19113893

RESUMO

Palladium nanoparticles supported on rutile TiO(2)(110)-1 x 1 have been studied using the complementary techniques of scanning tunneling microscopy and X-ray photoemission electron microscopy. Two distinct types of palladium nanoparticles are observed, namely long nanowires up to 1000 nm long, and smaller dotlike features with diameters ranging from 80-160 nm. X-ray photoemission electron microscopy reveals that the nanoparticles are composed of metallic palladium, separated by the bare TiO(2)(110) surface.


Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Paládio/química , Titânio/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...